

Section 2.5:

Vector equation for a line: $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$, where \mathbf{v} is a direction vector, and \mathbf{r}_0 is the position vector of a point on the line.

Equation for a plane: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$, where $\langle a, b, c \rangle$ is a normal vector, and (x_0, y_0, z_0) is a point on the plane.

Distance from a point P to a line: $\frac{\|\overrightarrow{PM} \times \mathbf{v}\|}{\|\mathbf{v}\|}$, where \mathbf{v} is a direction vector of the line, and M is a point on the line.

Distance from a point P to a plane: $\frac{|\overrightarrow{QP} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$, where \mathbf{n} is a normal vector of the plane, and Q is a point on the plane.

Line of intersection between two planes: its direction vector is $\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2$, where \mathbf{n}_1 and \mathbf{n}_2 are the normal vectors of the two planes. To find a point on the line, look for (x, y, z) satisfying the equations for both planes.

Angle between two planes: $\cos^{-1}(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\|\mathbf{n}_1\| \cdot \|\mathbf{n}_2\|})$, where \mathbf{n}_1 and \mathbf{n}_2 are the normal vectors of the two planes.