

Total time: 10 minutes.

Formulas:

Equation for a plane: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$, where $\langle a, b, c \rangle$ is a normal vector, and (x_0, y_0, z_0) is a point on the plane.

Distance from a point $P(x_0, y_0, z_0)$ to a plane: $\frac{|\overrightarrow{QP} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$, where \mathbf{n} is a normal vector of the plane, and Q is a point on the plane.

Problem 1 (5 points). Find the equation of the plane containing $P(3, 0, 1)$, $Q(1, -1, 2)$, $R(1, 3, -1)$.

$$\overrightarrow{PQ} = \langle -2, -1, 1 \rangle$$

$$\overrightarrow{PR} = \langle -2, 3, -2 \rangle$$

$$\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & -1 & 1 \\ -2 & 3 & -2 \end{vmatrix} = \langle -1, -6, -8 \rangle$$

Therefore the equation of the plane is

$$-(x - 3) - 6(y - 0) - 8(z - 1) = 0$$

(which simplifies to)

$$-x - 6y - 8z + 11 = 0$$

Problem 2 (5 points). Find the distance between the point $P(-1, 2, 3)$ and the plane $2x + 3y - z = 4$.

A normal vector of the plane is

$$\mathbf{n} = \langle 2, 3, -1 \rangle$$

To find a point Q on the plane, we set $x = y = 0$, and get $z = -4$. Therefore $Q(0, 0, -4)$.

$$\overrightarrow{QP} = \langle -1, 2, 7 \rangle$$

$$\text{distance} = \frac{| -2 + 6 - 7 |}{\sqrt{4 + 9 + 1}} = \frac{3}{\sqrt{14}}$$